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Abstract

Interaction diagrams are extensively used as a tool for designing prismatic members subjected to several combined

stresses. For a long time, sets of these diagrams have been available in building technologies, such as reinforced

concrete, steel and composite sections, under various stresses.

This paper shows the analytical formulation to obtain the diagrams corresponding to bending and torsion simul-

taneously acting on steel circular cross-sections in combination with shear force. In particular, a detailed analysis of the

interaction elastic limit surface is carried out for stresses acting on circular sections. Ó 2000 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

This paper develops a topic within the same ®eld as the one recently presented by the same authors (Irles
and Irles, 2000), but includes the study and construction of interaction diagrams for circular sections with
shear±bending±torsion.

This present study has the peculiarity that the interaction surface is made up of two regions with di�erent
characteristics (one of them is ¯at) depending on the di�erent locations of the most stressed point in the
section. These positions correspond to di�erent relative preponderance intervals of certain stresses among
those considered.

2. Approach to the problem

2.1. Yielding condition

Fig. 1 shows the stresses in a circular section generated by a torque (T ), bending moment (F ), and shear
force (Q).
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The analytical expression of the corresponding stresses is
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where the terms in the expressions are de®ned as follows: W � IT=R is the torsional resistant modulus, IF,
the moment of inertia and IT � 2IF, the torsional modulus, t, the thickness, R, the outer radius and RM, the
midline one, MEST �

R h
0

tR2
M cos hdh, the ®rst-order static moment about bending axis, and sQ, the average

for the shear stress s at each point in the wall's mid-line (this expression becomes less precise when the
thickness increases).

The e�ective stress at a generic point on the outer contour line (where it will no doubt ®nd its maximum
value) is expressed below:
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where R0� R2
M=R, and with respect to the only variable h, which de®nes the position of the point con-

sidered.
Following the usual yield criterion according to which the e�ective stress at the point (hmax) with the

highest stress will reach the elastic limit re, this condition will be

re �
���������������
f �hmax�

p

Fig. 1. Stresses in the circular section.
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or

r2
e � f �hmax� � �4F 2 cos2hmax � 3T 2 � 12TQR0 sin hmax � 12Q2R2

0 sin2hmax�=W 2: �2�

2.2. The search for the most stressed point

Since the stress functions (1) are continuous and valid throughout the range h 2 �0; 2p�, the value of hmax

can be obtained using the mathematical maximum condition:

f 0�h� � 0 � �ÿ8F 2 sin h cos h� 12TQR0 cos h� 24Q2R2
0 sin h cos h�=W 2: �3�

This equation has two solutions in the interval h 2 �0; p=2� (keeping in mind that it will su�ce to look for
the maximum value at that interval and taking into account the sign convention considered for Q and T,
and the symmetry of the problem):

�a� cos h � 0 ) h1 � p
2
: �4�

This ®rst solution for hmax always occurs, regardless of the values of T, F and Q. However, it will be shown
that it cannot always be a maximum. The second solution is

�b� ÿ 8F 2 sin h� 12TQR0 � 24Q2R2
0 sin h � 0 ) h2 � arcsin

3TQR0

2F 2 ÿ 6Q2R2
0

: �5�

This solution is only real when 3TQR0= 2F 2 ÿ 6Q2R2
0

ÿ �� � 2 �0; 1�, or (restricting it to positive values of T, F
and Q given the symmetry of the problem) when simultaneously

2F 2 ÿ 6Q2R2
0 > 0; �6a�

3TQR06 2F 2 ÿ 6Q2R2
0 ! C1�T ; F ;Q� � 6Q2R2

0 � 3TQR0 ÿ 2F 26 0: �6b�
This solution adopts two particular values: h2 � h1 � p=2 when Eq. (6b) is strictly ful®lled �C1 � 0� and

h2� 0 when either T or Q is zero.

2.3. Discussion of maximum values

The local maxima correspond to (T ; F ;Q) values making the second derivative strictly negative:

f 00�h� � 24Q2R2
0

ÿ� ÿ 8F 2
�

cos 2hÿ 12TQR0 sin h
�
=W 2 < 0: �7�

For each case, the following applies:

�a� f 00�p=2� � 8F 2
ÿ ÿ 24Q2R2

0 ÿ 12TQR0

�
=W 2 < 0:

This will occur, simplifying common factors, when

C1 � 6Q2R2
0 � 3TQR0 ÿ 2F 2 > 0: �8�

Only in that region of (T ; F ;Q) space is there a local maximum in h1 � p/2 (outside, there is a minimum
at the same point, since the ®rst derivative is always zero at this point; at the border of region, C1� 0,
the function f(h) lacks a curvature; however, being symmetrical with respect to h1, it does not show an
in¯exion point but it will be constant in [0, p/2]). When there is a maximum in h1 � p=2, the interaction
surface (2) in that particular space will be represented by the equation,

T � 2QR0 ÿ W re=
���
3
p
� 0: �9�

�b� f 00�h2� � 24Q2R2
0

ÿ� ÿ 8F 2
�

cos 2h2 ÿ 12TQR0 sin h2

�
=W 2 < 0;
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where, on replacing Eq. (5) and after performing some operations, this gives

F 2
ÿ ÿ 3Q2R2

0

�
4 F 2
ÿh ÿ 3Q2R2

0

�2 ÿ 9T 2Q2R2
0

i
> 0: �10�

Only in the space region (T ; F ;Q) satisfying Eq. (10) are we going to have a maximum in h2. In that case,
the interaction surface is represented by the equation obtained by replacing Eq. (5) with Eq. (2), which after
some operations, becomes

4F 6 ÿ 24F 4Q2R2
0 � 36F 2Q4R4

0 ÿ 9T 2Q2R2
0F 2 � 3T 2F 4 ÿ 9r2

eW 2Q4R4
0 � 6r2

eW 2F 2Q2R2
0 ÿ r2

eW 2F 4 � 0:

�11�
3. Geometric interpretation and discussion of the problem

3.1. Regions corresponding to each maximum situation

The (T ; F ;Q) space regions in which the position of the maximum of f(h) becomes explicit by Eq. (4) or
Eq. (5) are delimited by inequalities (8) and (10), respectively.

Next, the characteristics of these regions will be described. However, a detailed analysis will not be given
as it is beyond the reasonable scope of this paper.

3.1.1. Maximum in h1 � p=2
Inequality (8) is satis®ed by the (T ; F ;Q) points, internal in that space to a C1 cone with an elliptical

guideline, a vertex in the origin and an axis contained in the TQ plane. One of whose generatrices is the OT
axis, represented in Fig. 2.

Fig. 2. The C1 cone.
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For points located inside that cone, the maximum value of f(h) is reached in h1 � p=2, whereas, outside
the cone, a minimum value of f appears at the same point.

3.1.2. Maximum in h2 � arcsin 3TQR0= 2F 2 ÿ 6Q2R2
0

ÿ �� �
It can be demonstrated that inequality (10) is satis®ed:
(a) In the (T ; F ;Q) points being outside the C1 cone, and on the half space F >

���
3
p

QR0 (Fig. 3) simulta-
neously.
(b) In the points (T ; F ;Q) being (i) outside the C2 cone, symmetric to the C1 cone with respect to the FQ
plane; (ii) on the half space F <

���
3
p

QR0 (Fig. 3) simultaneously.
If the study is restricted to the ®rst octant in the T, F, Q space (without making the problem less general,

given its symmetries), all these conditions are summarized in a single condition: the (T ; F ;Q) combination is
outside the C1 cone. This occurs because, in the above mentioned octant, the second condition of (a) is
included in the ®rst one, and the region inside it that ful®lls (b), remains inside the C1 cone, where according
to Eq. (6b), the solution h2 of Eq. (3) is not real.

In a summary, at (T ; F ;Q) points inside the C1 cone, the maximum of f(h) is reached at h1, and outside
the cone, the maximum of f(h) is reached at h2. Whereas precisely on its surface, from Eqs. (4) and (5), it
occurs that h2 � h1, and there is a continuous variation of the position for the maximum.

3.2. Study of the limit surface for the maximum in h1

When the maximum of f(h) is reached in h1, the limit interaction surface is given by Eq. (9).
This surface is a plane in the (T ; F ;Q) space, parallel to the cone back generatrix, which cuts the C1 cone

into a parabola as it is shown in Fig. 4. Its ®eld of validity is limited to the inner part of the cone, in other
words, to the portion represented in the ®gure. The surface is independent of F because the bending stress is
zero at h1. The parabola is given by the system of Eq. (9) and C1� 0 in Eq. (8).

Fig. 3. Intersection of C1 and C2 cones with plane F � ���
3
p

R0Q.
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3.3. Study of the limit surface for the maximum in h2

When the maximum of f(h) is reached at h2, the limit interaction surface is given by Eq. (11).
This surface, considerably more complex than the previous one, becomes the interaction surface outside

the C1 cone.
Although a detailed account cannot be given in this study, some conclusions could be o�ered, which are

the following:
Expression (11) can be factorised as

F 2
ÿ ÿ 3R2

0Q2
�

4F 4
� � F 2 3T 2

ÿ ÿ 12R2
0Q2 ÿ W 2r2

e

�� 3W 2r2
eR2

0Q2
� � 0: �12�

Surface (11) consists of three sheets, two of them ¯at. The third sheet shows, in general, a double cur-
vature and, in turn, is divided into six regions: four of them are open and not fenced in, whereas two
of them are closed and fenced in, symmetric in pairs with respect to the TQ plane. In fact, the surface
is symmetric with respect to the three coordinate planes and meets the origin and several straight lines
in its course.
Of surface (11), only the portion of the closed regions contained in the ®rst octant, a�ects the problemÕs
range. In Fig. 5, the portionÕs contour line seen from the three projections and a perspective are repre-
sented, which gives an idea of its shape.
The plane given by Eq. (9), which constitutes the interaction surface in the case of maximum in h1� p/2,
is tangent to surface (11) along a parabola coinciding with the intersection of that plane with the C1 cone.
The surface closed regions are contained in a cylinder with a vertical Q axis, whose guideline is the ellipse
forming the intersection of the surface with the Q� 0 plane, and along which the surface and the cyl-
inder are tangent.

Fig. 4. The limit surface for maximum in h1.
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Fig. 5. The closed region of surface (11) a�ecting the problem.

Fig. 6. Generation of possible interaction diagrams.
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Therefore, the validity region of the surface for the problem corresponds to its portion in the ®rst octant,
external to the C1 cone, for which that surface also cuts according to the same parabola.

It can also be seen (see Garc�õa and L�opez (1984) or any other Algebra treatise) that in a (T 2; F 2;Q2) space
the plane part of the limit surface in the (T ; F ;Q) space becomes a cylinder with conical directrix, and the
curved part becomes an hyperbolic paraboloid but this representation seems less interesting from the point
of view of obtaining interaction diagrams.

4. Representation of the limit surface: interaction diagrams

The limit surface is constituted by two regions, one of them ¯at and the other curved, but with a
continuity of value and of ®rst derivatives in all directions throughout the common parabola. Taking this

Fig. 7. Interaction graphs for a pro®le with R� 50 mm and t� 6 mm (re� 254.8 ´ 106 Pa).
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into account, all the possible interaction diagrams representing their contour lines according to planes
parallel to the coordinate ones will be made up of mixed lines with a straight part and a curved one. The
latter would have a di�erent nature depending on the section being considered, as well as the continuity of
value of the ®rst derivative in the con¯uence point.

Fig. 6 shows the generation of the three possible diagrams for the di�erent sections indicated. The lines
corresponding to sections where F � constant, are made of straight and elliptic parts. In the other two
cases (T � constant or Q � constant), the curved stretch is represented by more complex fourth degree
equations. However, one of the variables can be made explicit.

In Fig. 7, three possible interaction diagrams are represented for a supposed section with R � 50 mm
and t � 6 mm of a steel with re � 254:8� 106 Pa, ready to be used.

5. Conclusion

This paper deals with the analytical formulation for obtaining the yield limit interaction surface for the
shear, bending and torsional stresses in circular hollow metallic sections.

The surface consists of a ¯at part and a warped one, in the corresponding shear±bending±torsion space.
A complete discussion of the problem is o�ered in which exclusively analytical techniques have been

used. These techniques are more or less complex depending on the characteristics of each region in the
surface.

The examination of the surface shows that except for torsion and bending (T ; F ) pairs near their
maximum values, the surface is independent of the bending action.

As an example, interaction diagrams have been provided for a section with R� 50 mm and t � 6 mm.
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